Posted tagged ‘RAS’

When “Environmentalists” Take Anti-Science Positions….

August 20, 2013

I have been following with great interest this discussion in the “Aquaculture & Seafood Networkers” group on LinkedIn. If  you are an aquaculture professional and you don’t belong to this group, you should (and if you don’t belong to LinkedIn because “I don’t have time for social media” — shame on you!)

The discussion, at the start, is about a Vancouver Sun article on closed-containment aquaculture. However, when a group member who is currently making a documentary about net-pen salmon farming enters to pronounce that “closed containment systems should be the only way farmed fisheries operate” and open-net farms “are devastating to our oceans and our wild salmon,” a conversation is sparked that should be taking place much more publicly than on a specialist LinkedIn group.

As he can always be counted on to do, Dave Conley, senior consultant and founding partner of Aquaculture Communications Group,  springs forth to challenge the scientific basis of net-pen opponents’ objections. At this writing, the Alaskan filmmaker has yet to produce a single piece of peer-reviewed research supporting her arguments about “the harmful impacts of farmed salmon to our health and to our environment.”

In response to several links supporting her position, Ivar Warrer-Hansen, Head of Business Developments at Inter Aqua Advance — who makes his living selling the very type of closed-containment systems the filmmaker advocates — asks her to “just give me one peer reviewed article please, just one.” So far, she has been unable to do so. I will keep watching and report here if she does.

Within this discussion is a brief but interesting exchange about feed-conversion ratios that is a must-read for anyone who has ever tried to defend aquaculture against the “10 pounds of fishmeal for every 1 pound of salmon” meme. Again, thank you Dave Conley for providing the links to the relevant research.

I’ll give the last word to Ivar: “The sad thing is that when [environmentalists] take anti-science positions, they weaken the environmental movement – they give environmentalists a bad name. We all want to look after our environment.”

Aquaculture & GMOs: Sorting Out the Issues

September 2, 2012

Of all the topics being discussed and debated on the Aquaculture Means Business LinkedIn group, few, if any, have been more contentious than those surrounding the role of genetically modified (GM) or genetically engineered (GE) organisms in agriculture generally and aquaculture in particular. As I sift through the arguments in the LinkedIn group and the materials referenced by their proponents, I’ve tried to sort out the most relevant questions with regard to aquaculture as business. The questions, as I see them, are:

  • Are GM/GE organisms inherently dangerous?
  • Where do the dangers reside?
  • Can those dangers be eliminated or sufficiently mitigated?
  • Are the benefits offered by GM/GE organisms worth the costs of risk mitigation, or are the problems they seek to address better resolved by less-controversial means?

1. Are GM/GE organisms inherently dangerous? Most meaningful technological advances involve some risk of unintended consequences. Even something as clearly beneficial as a blight-resistant tomato entails the risk of crowding out unenhanced native species, reducing bio-diversity, etc. One doesn’t have to invoke GMOs to think about such risks — one only needs to look as far as the corn economy, at how commercial emphasis on producing a handful of preferred strains on an industrial scale has resulted in massive amount of global economic resources being to sustaining a corn monoculture. The introduction of genetic modification can and has exacerbated this trend, but it is not the root cause. The root cause resides in the economic and political structures and dynamics that govern agriculture policy and decision making. Much the same could be said for the beef economy, with its highly inefficient feed-conversion ratios (feed based on corn, which cattle did not evolve to digest — again, one doesn’t have to invoke GMOs to recognize the highly “unnatural nature” of the existing food-production industry).

2. Where do the dangers reside? With regard to aquaculture, the most-frequently invoked danger is that of escapes of GMO fish into the wild, where they might outcompete and devastate wild varieties. Again, this is not a risk that is restricted to genetically engineered varieties — the economic and environmental damage caused by invasive species globally is well documented. One needs to look only as far as the impact of lionfish in Florida, Asia carp in the American Midwest, and zebra mussels in the St. Lawrence River and the Great Lakes. Some concern has been expressed about potential human health impacts of consuming GMO fish, but, as Dave Conley points out (quoting a representative of the Royal Society of London):

“We have looked at all of the available research, and found nothing to suggest that the process of genetic modification makes potential foodstuffs inherently unsafe. ”

Again, I juxtapose this with the very real and well-documented human health impacts of our corn economy in terms of the obesity epidemic caused, in large part, by the inclusion of high-fructose corn syrup in virtually every processed food product consumed in the developed world.

3. Can those dangers be eliminated or sufficiently mitigated?  In the case of aquaculture, the danger of escapes certainly can be mitigated by genetic and mechanical means. Creating sterile GMO fish and raising them far from oceans and rivers where they might affect wild species are two of the most obvious mechanisms and seem fairly fail-safe. The question that plagues people who are concerned about commercialization of GMO agricultural products (and, full disclosure: I count myself among them) is whether such fail-safe mechanisms will survive collision with economic and political incentives and constraints. In other words, if we become too comfortable too quickly with these techniques, how long will it be before safeguards are eroded in order to facilitate commercial interests? My concerns are not exclusively (or even primarily) about risks inherent in the techniques of genetic engineering — they have more to do with the economic and political incentives running in the background.

4. Are the benefits offered by GM/GE organisms worth the costs of risk mitigation, or are the problems they seek to address better resolved by less-controversial means? For me, this is the nub of the issue, especially where North American aquaculture is concerned, and I don’t have the answer. I agree fully with people like Dave Conley who argue that knee-jerk opposition to genetic engineering has a great deal in common with knee-jerk opposition to aquaculture. In both cases, the opposition often is not well thought out and is rooted more in simplistic media-generated narratives than in understanding of the science and technology.  What concerns me — along with a general wariness of the intersection between business and politics — is that hitching North American aquaculture’s wagon to the horse of genetic modification may just turn into another distraction from and obstacle to bringing the aquaculture industry on this continent to commercial viability.

When I look at aquaculture, I see a fairly uncontroversial set of opportunities to solve fairly obvious problems: the global human population is growing rapidly and requires access to healthy, efficiently sourced protein. Our current agricultural system, based on producing corn to feed to large mammals to feed to humans, is hugely inefficient in terms of land and water use and feed conversion. Aquaculture, as currently practiced in most of the world, involves a handful of solvable environmental concerns that can best be addressed in the developed world but, for economic and policy reasons, tends to be outsourced to less-developed, less-regulated areas.

I’m just not sure, at this moment in the industry’s history, it makes sense to focus overmuch on genetic engineering, whose main benefit — it seems to me — is to introduce incremental efficiency benefits to an industry that already offers huge efficiency advantages over existing food-production alternatives. Am I missing something here? If the primary benefit of genetic engineering is to grow fish bigger, faster, on less feed and thereby produce protein at a lower cost (lower cost being the bottom line, the linchpin to commercial viability) — mightn’t there be ways to achieve that end without introducing another component for environmental NGOs and regulators to object (rightly or wrongly) to?

Gary Myers argues forcefully that a combination of vertical integration and appropriate siting of aquaculture facilities can generate sufficient systemic efficiency to render the use of GMO techniques superfluous. When I think about the risk-mitigation costs inherent in alleviating concerns around GMOs, versus the value- and efficiency-creating costs implied by Gary’s recommended approach, Gary’s argument comes across to me as more compelling. Perhaps as inland, enclosed systems gain traction and become competitive with other forms of food production, the introduction of GMO techniques may make sense to wring even greater efficiency out of already highly efficient system, thus making North American aquaculture that much more competitive.

Let’s not throw the GMO baby out with the bathwater; but let’s be smart in all aspects of developing this industry.

Blue Oasis Pure Shrimp: More Kick-Ass Storytelling

January 14, 2012

This short video from Blue Oasis is another example of what I’ve been calling “Kick-ass storytelling” by aquaculture enterprises.  Professionally produced, a compelling answer to the question: “Why should I care about this company and its products?”

What do you think?

Some Kick-Ass Aquaculture Storytelling

October 29, 2011

I’m guessing everyone who follows aquaculture is aware to greater and lesser degrees of the technical, environmental, and political challenges the industry faces. Well (in the spirit of the adage, “Give a child a hammer and suddenly everything becomes a nail”), I’d like to talk a bit about the challenge/opportunity that doesn’t seem to be discussed with anywhere near the knowledge and sophistication with which these are talked about. I hesitate to call it “marketing” — I’m thinking about something more fundamental. Call it “storytelling”.

I don’t endear myself to my aquaculture friends who ask me for marketing advice when I tell them, “You’re not ready for marketing. You don’t even have a story”. They want me to share some magical secret about better packaging or website design or social media strategy. The real secret isn’t a secret at all: there is no stronger magic than a good story.

Below are two examples of some of the better aquaculture storytelling I’ve seen.  Whatever critiques I might make from a “marketing” perspective, there is no doubt that these are kick-ass stories — and without a kick-ass story behind it,  “marketing” is just white noise.

In the spirit of my previous post,  these examples draw from both the offshore and inland recirculating worlds.  I’m not vouching for the accuracy of any of what you’ll see in these clips; all I know is that the stories move me and make me want to know more.  Please let me know if they do (or don’t) have the same effect on you.

The first was shared with my by, I believe, Tetsuzan Benny Ron, the aquaculture program coordinator at the University of Hawaii:

The second was provided by Gareth Lott, founder and CEO at Aquanue:

Nice examples of aquaculture storytelling that can and should be emulated and built upon.

Offshore, Inland…Can’t We All Get Along?

October 29, 2011

“I’m beginning to see a pattern here,” writes Clifford Goudey in the discussion DOES the Future Lie in Offshore Aquaculture? on the Aquaculture Means Business group  on LinkedIn. “Promoters of land-based aquaculture technologies seem compelled to criticize the emerging offshore aquaculture industry. Is this because it is viewed as a threat to your bottom line? ”

In my brief time following the global aquaculture industry, I’ve seen a bit of what Clifford describes, working in both directions.  It often seems to me that advocates of different technologies and techniques spend valuable energy slamming competing technologies and techniques — energy that might be better spent collaborating creatively to develop a portfolio of methods that could profitably and sustainably help feed a growing human population.

Clifford completes his thought as follows:

“I think that with the unfulfilled and growing demand for seafood this behavior is unwarranted and counter productive. Farmed fish has enough detractors without such nonsense coming from within the aquaculture sector. A further reason for tolerance across sectors is to reduce the risk of reactionary criticism developing regarding RAS [recirculating aquaculture systems] and other land-based technologies, legitimate or otherwise.”

I couldn’t agree more.  Let’s not turn into these guys:

%d bloggers like this: